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of 3-D Interconnect Structures in the VLSI Circuits:
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Abstract—In this paper, the domain-decomposition method
(DDM) has been used to extract the capacitance matrices of multi-
layered three-dimensional (3-D) interconnects in very-large-scale
integration (VLSI) circuits. Different subdomains are analyzed
separately, so the most efficient method can be chosen for every
subdomain. Therefore, the DDM can greatly reduce the algorithm
complexity and provide a good platform for the development of
combining methods. Numerical results show that the computing
time and memory size used by the DDM are more than ten
times less than those used by Ansoft’s Maxwell SpiceLink—and
more importantly, they are unrelated to the thickness of the pure
dielectric layers.

Index Terms—Domain decomposition method, numerical meth-
ods, parameter extraction.

I. INTRODUCTION

T HE TREND of future very-large-scale integration (VLSI)
circuits is toward narrower linewidth, larger die size,

greater number of interconnect layers, and higher clock fre-
quencies. As a result, the electrical characteristics of the
interconnects are becoming more important factors dominating
the behavior of the integrated circuits. This has increased the
interest in the efficient methods for the parameter extraction.

Many numerical methods have been used to calculate the
capacitance matrices of interconnects [1]–[8]. Recently, a
novel algorithm called dimension-reduction technique (DRT)
is developed to calculate the capacitance matrices of three-
dimensional (3-D) interconnections [9], [10]. The DRT uses
magnetic walls (MW’s) to cut the complex interconnect net
into many simple cells. By taking advantage of the known
eigenmode functions in such layers as pure dielectric layers,
and layers with parallel signal lines, the computing time
and memory needs are reduced dramatically. However, the
DRT is basically a field-matching method, so the computing
time increases quadratically with the increase of the num-
ber of eigenmode functions. Therefore, when the number
of conductors in one layer is large, the advantage gained
from the analytical form of eigenmode functions will be
completely offset by the time consumed for the inverse of large
full matrices. The major source that degrades the efficiency
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of the DRT is that the DRT solves the Laplace equation
simultaneously in every layer.

To overcome this problem, the domain-decomposition
method (DDM), an efficient technique to solve the partial
differential equation (PDE) [11], [12], is used to calculate the
capacitance matrices of various two-dimensional (2-D) and
3-D interconnect structures. The cutting strategy in the DRT
is still adopted. The DDM then decomposes each cell into
subregions and separately solves the PDE in each subregion.
The DDM has the following attractive features.

1) Every subregion is analyzed separately. Therefore, one
can choose the most efficient method for each subregion
independently. This has greatly reduced the algorithm
complexity and has laid a good ground for the develop-
ment of combining methods.

2) Like the DRT, many subregions, such as the subre-
gions with the pure dielectric layers, can be analyzed
analytically. Therefore, the domains that have to be
analyzed numerically are reduced to the least. This
has dramatically reduced memory needs and computing
time, and more importantly, has made them unrelated to
the thickness of the pure dielectric layers.

3) If one uses the finite-difference method (FDM) or finite-
element method (FEM) to analyze subregions, the resul-
tant sparse matrix will be much smaller than that resulted
from dividing the entire region into meshes.

The sparse matrix solver takes time for the direct
methods (like LU decomposition and Gauss elimination) and

time for the iterative methods [like the conjugate
gradient method (CGM)], where . Thus, the central
processing unit (CPU) time used for every subregion is far
less than that used for the entire region. This benefit may be
offset by the fact that the DDM is an iterative method, but
the CPU time of the DDM will still be less than that of the
traditional FEM or FDM if the iteration times are few. This
advantage will be even greater if the interconnect structure has
many dielectric layers and conductors.

The DDM has been used to extract the capacitance matrices
of several 2-D and 3-D interconnect structures. The results are
in good agreement with those of SpiceLink, but the memory
size and computing time used by DDM are more than ten
times less than those used by SpiceLink.

In Section II, a brief introduction of the relaxation Schwarz
alternating method will be presented. The DDM for the
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Fig. 1. Two overlapping subregions.

multilayered structures is then presented in Section III. In
Section IV, several examples are given to demonstrate the
flexibility and efficiency of the DDM, while conclusions are
stated in Section V.

II. RELAXATION SCHWARZ ALTERNATING METHOD

There are two kinds of DDM’s. For one of them, the domain
is decomposed into nonoverlapping subdomains; the solution
on the neighboring subdomains are related by certain continu-
ity conditions at the interfaces. For the other kind, the domain
is decomposed into overlapping subdomains, and an iterative
solution procedure is used alternatively over the subdomains.
The latter is usually called the Schwarz alternating method.

Consider a 3-D Dirichlet problem

(1)

where is a bounded open region, and its boundary is
. Region can be divided into two overlapping subregions

and , as shown in Fig. 1. Denoting and as the
boundaries and fictitious boundaries of , the
Schwarz alternating method can then be expressed as in the
following iterative scheme:

(2)

(3)

where is the initial guess. A relaxation factor can be
introduced into (2), (3) to accelerate the convergence. The
new scheme with the relaxation factor is

(4)

(5)

If then for any initial guess , the
relaxation Schwarz alternating method converges [13]. The
algorithm in (4), (5) is also valid if the region is divided
into more than two subregions.

(a)

(b)

Fig. 2. Multilayered-interconnect structures. (a) Multiconductor lines. (b)
One straight line over one bend.

It is obvious that the convergence rate of the Schwarz
alternating method is closely related to the size of the over-
lapping region. A Fourier series method is used in [14],
[15] to analyze the case of the rectangular subregions. The
conclusion is that the iteration error decreases exponentially
with the increase of the ratio of the overlapping domain over
the subregion. This conclusion is extended to the general cases
of arbitrary subregions in [14]. However, increase in the size
of the overlapping domain will result in the increase in the
computational complexity of the subregion. Hence, there exists
a balance between the convergence rate and the size of the
overlapping domain.

III. D OMAIN-DECOMPOSITIONMETHOD FOR

MULTILAYERED-INTERCONNECTSTRUCTURES

Up to now, the effective frequency range of the signals in
the VLSI system is still below 10 GHz. Therefore, the quasi-
static assumption is still valid. According to the assumption,
the planes, which are far enough from the signal lines or
discontinuities in Fig. 2 and normal or parallel to the axis
of the signal lines, can be replaced by MW’s. The validation
of this argument is presented in [10].

The cross section of multilayered multiconductor lines and
a straight line over a bend embedded in multilayered media are
shown in Fig. 2. The layers in these structures can simply be
categorized into two kinds: layers with conductors and pure
dielectric layers. Thus, an obvious way of decomposing the
whole structure into subregions is to take a cascade of pure
dielectric layers as a subregion and every layer with conductors
as a subregion. For example, the domain decomposition of the
structure in Fig. 2(b) is shown in Fig. 3.

A. Iteration Algorithm

Since the neighboring subregions of every subregion do not
overlap, it is straightforward to extend the iteration scheme



ZHU et al.: EFFICIENT ALGORITHM FOR THE PARAMETER EXTRACTION OF 3-D INTERCONNECT STRUCTURES 1181

Fig. 3. Domain decomposition of the multilayered structure in Fig. 2(b).

(4), (5) for two subregions to the more general scheme for the
multilayered structure with more than two subregions. Denote
the upper and lower fictitious boundaries of subregionas

and , and denote the potentials
on them for the th system iteration as and , then
in every subregion, (1) can be rewritten as

(6)

(7)

(8)

(9)

(10)

where is the number of the subregions, is the
top plane of the subregion , stands for the MW’s
surrounding the th subregion and stands for the unit vector
normal to . After solving (6)–(10) in every subregion, the
potentials on the fictitious boundaries are

(11)

(12)

Using the relaxation iterative scheme

(13)

one obtains the new potentials on the fictitious boundaries
for the next system iteration. Similar to (4) and (5), if

, then for any initial guess
, the above iterative scheme converges.

The subregions can also be classified into two categories:
subregion with conductors, such as and (Fig. 3) and
pure dielectric subregion, such as , and (Fig. 3).
The subregion with pure dielectric layers is homogeneous
along - and -directions; hence, the analytical method
such as the mode-matching method (very similar to that
presented in [9]–[10]) is the most suitable method. However,
the subregion with conductors is generally inhomogeneous
along -, -, and -directions, so one has to choose
a flexible and efficient method, such as the FDM, to
solve (6) in this subregion. Therefore, the DDM has set
up a very good platform for one to develop combining
methods.

Fig. 4. Four conductors embedded in nine dielectric layers.

TABLE I
THE NUMBER OF ITERATIONS OF DIFFERENT SEQUENCES

B. Iteration Sequence

When using the DDM to analyze the multilayered structure,
shown in Fig. 4, there are three typical iteration sequences as
follows:

1)

or

2)

3)

where the subregions to the right of the symbol “” can
be interchanged during the iteration. These three iteration
sequences have been used to analyze the structure in Fig. 4.
The number of iterations is shown in Table I, from which
one can see that sequence 3 is the best one. As far as
is known, there is no rule about how to choose the best
iteration sequence, so sequence 3 will be used throughout
this paper because there is numerical evidence to support this
choice.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the DDM is used to analyze several 2-D
and 3-D interconnect structures, and the results are compared
with those of a FEM-based commercial tool, Ansoft’s Maxwell
SpiceLink. Since the results of the quasi-static analysis are
unrelated to the units of the size of the interconnects, relative
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Fig. 5. Ten conductors embedded in five dielectric layers.

TABLE II
ITERATIONS VERSUS RELAXATION FACTOR

values as the size of the interconnects will be used. The
convergence criteria of the DDM is

(14)

where stands for the Euclidean norm andis a user-
specific threshold value. For clarity, only the diagonal elements
of the capacitance matrix are presented if the number of the
conductors is over five.

A. 2-D Interconnect with Ten Conductors Embedded in Five
Dielectric Layers

The cross section of the interconnect is shown in Fig. 5. Ten
conductors are embedded in five dielectric layers supported
by a ground plane. The size of every conductor is 55, the
gap between the conductors is 5, the thickness of every pure
dielectric layer is 12. The distance between the conductor and
the MW is 10. The relative dielectric constant of every layer is
2, 4, 4, 6, 6. (counted from bottom). The top layer is covered
by open air.

The thickness of every overlapping region is set to be 4.
The threshold value in (14) is %. The truncated mode
number in every pure dielectric layer is 10. The iterations
versus relaxation factor is shown in Table II, from which
one can see that the optimal relaxation factor is .
As far as is known, no rules have been presented to choose
the optimal relaxation factor [13]. Therefore, a trial-and-error
process has to be used to decide an optimal factor for a specific
structure. Fortunately, it has been found that for multilayered
structures, the optimal relaxation factor is always around 1.5.
Thus, 1.5 was chosen as a fixed value of the relaxation factor.
The diagonal entries of the capacitance matrix calculated by
the DDM and SpiceLink are compared in Table III. The
discrepancy between two results is within 5%. In the Sun
SPARC workstation 4, the computing time of the DDM is
15 s when , while that of the SpiceLink is 28 s.
Therefore, the algorithm in this paper is both correct and
efficient.

TABLE III
DIAGONAL ENTRIES OF THE CAPACITANCE MATRIX

CALCULATED BY THE DDM AND SPICELINK (IN pF/m)

(a) (b)

Fig. 6. Top view of the layers with conductors in Fig. 2(b),a = 9, b = 8.
(a) Layer with a straight line,S1 = 3, S2 = 5. (b) Layer with a bend,
h1 = h2 = 3:5.

B. 3-D Interconnect with One Straight Line Over One Bend

The structure is shown in Fig. 2(b) and the top view of the
layer with a straight line and the layer with a bend is shown
in Fig. 6(a) and (b), respectively. The size of the cross section
of each conductor is 1 1. Counted from the bottom, the
thickness of every layer is 1, 1, 1, 1, 1, and 2, the dielectric
constants are 2, 4, 4, 4, 6, and 6. Other geometrical parameters
are shown in Fig. 6. The thickness of the overlapping domains
are 0.5. Truncated mode numbers along- and -directions
are 5. The optimal relaxation factor is . The threshold
value in (14) is %.

The capacitance matrices calculated by the DDM and
SpiceLink are shown in (15), (16), the discrepancy between
two results is within 5%. In SunSparc workstation 20, the
computing time and memory size used by the DDM and
the SpiceLink are 12 s and 0.588 Mbytes, 343 s and 39.1
Mbytes, respectively. Therefore, the computation sources
used by SpiceLink are about 30 times those used by the
DDM

DDM: pF (15)

SpiceLink: pF (16)

C. Four Conductor Crossovers Above Two Bends
Embedded in Seven Dielectric Layers

The structure is shown in Fig. 7. The size of every straight
lines is 1 1 13, the gap between conductor 3 and 4,
as well as conductor 5 and 6, is 3. The distance between
the straight line and MW is 4. The size of the cross section
of every bend is 1 1, other geometric parameters of the
bends are shown in Fig. 8. Counted from the bottom, the
thickness of every dielectric layer is 1, 1, 2, 1, 1, 1, and 1,
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Fig. 7. Crossovers above bends embedded in seven dielectric layers.

Fig. 8. Top view of the layer with bends in Fig. 7,a = b = 13, S1 = 3:5,
S2 = 3.

TABLE IV
DIAGONAL ENTRIES OF THECAPACITANCE MATRICES (IN PF)

the dielectric constant of every layer is 2, 3, 3, 4, 4, 5, and 5.
The thickness of the overlapping domain is 0.5, the truncated
mode numbers along- and -directions in each pure dielectric
subregion are 5, the optimal relaxation factor is , the
threshold value in (14) is %. The capacitance matrices
calculated by the DDM and SpiceLink are compared in Table
IV, the discrepancy of two results is within 2%. In Sun SPARC
workstation 20, the computing time and memory size used by
the DDM and the SpiceLink are 122 s and 2.7 Mbytes, 1327
s and 75.9 Mbytes, respectively. Therefore, the computation
sources used by SpiceLink are more than ten times those used
by DDM.

Since every subregion is analyzed separately, the algo-
rithm complexity is reduced dramatically. For instance, to
analyze the structure in Fig. 7, only three independent codes
for the basic subregions are needed. They are: 1) the code
for the subregion with single-layered bends; 2) the code
for the subregion with single-layered straight lines; and 3)
the code for the pure dielectric subregion. The size and
complexity of each subregion is much smaller than those
of the whole structure; hence, every code is much simpler
than that for the analysis of the whole structure. Using these
three codes, many kinds of combining structures can be
analyzed, such as the structures in Figs. 2(b) and 7. The
number of basic subregions is limited, so if a library is
set up consisting of the independent subroutines for these

basic subregions, then based upon the DDM, this library
can be used to analyze most interconnect structures in VLSI
circuits.

V. CONCLUSION

In this paper, the DDM has been used to calculate the
capacitance matrices of 2-D and 3-D multilayered-interconnect
structures in VLSI circuits. Numerical results show that the
computing time and memory used by Ansoft’s SpiceLink
are more than ten times those used by the DDM. Aside
from this, the memory needs and computing time of the
DDM are unrelated to the thickness of the pure dielectric
layers. The DDM provides a good platform for the devel-
opment of combining methods and a good framework for
the development CAD software for the interconnect prob-
lems.
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